’I\

1S1/SR-76-7
June 1676

s WM N

ARPA ORDER NO. 2223

ADA026441

PROTECTION ERRORS IN OPERATING SYSTEMS:

Allocation/Deallocation Residuals

Dennis Hoilingworth

Richard Bisbey I

DD C

Fr[?mr "‘f"".ﬂ"---1
U]

Jur i |

IJ! - i Z.__'lJE

Q(,?‘

INFORMATION SCIENCES INSTITUTE

4676 Admivalty Way] Mavina del Rey [Californa 00291
ONIVERSITY oF SOUTHERN CALIFORNITA (215)822-1511

BEST
AVAILABLE COPY

g I ST S —
Ny 0 b S i T T S e o
5 o e e - T T g
- i ; R I g e —
- e imimasn SRR, L m—n T

UNCLASSTFIED

SECURITY CLASSIFICATION oF THIS P AGE (When Dete Entered)

READ INSTRUCTIONS

v B
4§ REPORT DOCUMENTATION PAGE [oerous COMPLETING FORM
ER \z. CovT ACCESSION NO- 3 RECIPIENT'S CATALOG NUMBER
e —]
4. TITLE (end Subtitie) ——————— AR COURRED
é irotection Brrors in Operating Systems: 5 Research /&fi')
[Mlloc_ﬂatmr./Deallocatlon Residualse | WMBER——‘
T AUTHOR(®) e +CONTRACT OR GRANT NUMBER(®)
:)) o 7 \ /‘ | oy . -
uwnm/lnllmuwarth(Hl:'c]ﬂ'rdjféi:‘:bﬁy} 11 /)\ IDAHOS—JZ— dﬁfiﬂ?’s))
. q .~ " 3
il Al I i/ ey 2292
5. PERFORMING ORGAMITATION MAME ANMD ADDRESS i
usc/information Sclences Institure’ AR T UNj 5 JYMBERS
676 Admiralty way Propram Code Ip3u & 3P10
jarina del Rey, LA Ju2ul
11 CONTROLLING aOFFICE HAME aAMD LDE-H:EI'SS
Uefense Advanced Research Projects Acency
1400 Wilson ilvd., Arlineton, wA 22209
Ta WMOHITORING AGEHLCY MAME & l.onHlE!.s.nrdlrruunl fram Contrelling Qiflee) !-E'.JRIT\' CL ASS. (of this repa
——— Unclassified
81 e e
TS necusmﬂznmu-m-nc.nmmr.
ECHEDULE
) — —— _______————-_-_-_.
; 6 DISTRIBUTION STRTEMENT (of thts Report)

This document is approved for public release and sale; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol the shatrect antered In Block 20, 11 different irom Report)

——

19. KEY WORDS (Continue on reveree eide Il neceeeary and identily by block number)

legiduals, computer gecurity, operatine gsystems, protection evaluation,

protection policy

20, ABSTXT (Continue or roveree elide i1 neceeeary and identify by block number)

A common security problem is the residual--data or access capability left after the:
completion of a process and not intended for use outside the context of that process. 1t
the residual becomes accessible to another process, 2 security error may result. A major
source of such residuals is improper Of incomplete a\\ocation/dea\\ocation processing. The
various types of a\\ocation/dea\location residuals are discussed in terms of their
characteristics and the manner in which they occur, and a semiautomatable search strategy

for detecting sources of these residuals is p:esentedv

JAN 73

2 S/N 0102-014-6601

SECURITY CLASSlFlCATlON OF THIS PAGE (When Data E

ntered)

3

oD ‘F°R“ 1473 eoiTioN OF 1 NOV 6515 OBSOLETE FN‘CLASSIFIED’%Vy 7&@

—
g e

VRT3

-

B T T TR I T T T L L T g et T
s - g - A

1S1/SR-76-7
June 1976

ARPA ORDER NO. 2223

PROTECTION ERRORS IN OPERATING SYSTEMS.

Allocation/Deallocation Residuals
Dennis Hollingworth
Richard Bisbey Il
. iy
| 2T
! r
i
LI
U
T INFORMATION SCIENCES INSTITUTE
4676 Admiralty Way/ Marina del Rey/ California 90291
UNIWVERSITY OF SOUTHERN CALIFORNIA (213)822-1511

- THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE: DISTRIBUTION IS UNLIMITED.

THIS RESEARCH |S SUPPORTED BY THE ADVANCFED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAHCI15 72 C 0308, ARPA ORDER
NO 2223 PROGRAM CODE 1{O. 3D30 AND 3P10.

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR'S AND SHOULD NOT BE INTERPRETED AS REFPRESENTING THE
OFFICIAL OPINION OR POLICY OF THE UNIVERSITY OF SOUTHERN CALIFORNIA OR ANY OTHER PERSON OR AGENCY CONNECTED WITH IT.

S T i Gl o S - S S AR L S R AR e R

e

o

%

i
!
K|
"
/
"
4

R e W 2

ABSTRACT

A common security problem is the residual--data or access capability left after the
completion of a process and not intended for use outside the context of that process. If
the residual ' scomes accessible to another process, a security error may result. A major
source of su 1 residuals is improper or incomplete allocation/deallocation processing. The
various types of allocation/deallocation residuals are discussed in teims of their
characteristics and the manner in which they occur, and a semiautomatable search strategy
for detecting sources of the-e residuals is presented.

L ek o ot o Ll e

PREF ACE

This document is one of a series of related reports, each describing a specific type
of security problem found in contemporary computer operating systems and suggesting
techniques for finding errors of that type in a variety of systems (different versions,
manufacturers, etc.). The reports are intended for use by persons responsible for
evaluation and enhancement of the security of existing operating system software. These
studies will assist individuals having no particular expertise in the field of operating
system security to effectively carry out these tasks.

The particular security problem addressed by this document is that of the potential
for security violations resulting from failure of deallocation/allocation procedures to
completely destroy all residue of the previous use of a storage object. Such "residuals”
constitute a widely recognized form of security problem which warrants treatment in its
own right. While it is recognized that security errors involving residuals can occur in a
variety of ways, this document is restricted to those which are associated with improper
or incomplete allocation/deallocation processing.

ko e L Lok e i Tl f b] L b e i B Sl S (i Sl M il ol i B SR b LA e B

PR T I

P iy

vi

ACKNOW LEDGMENT

Many of the ideas in this report were clarified, and their presentation improved, as
a result of suggestions by our collaborator on the Protection Analysis Project, Jim

Carlstedt.

20

Ny

-

PN

:gfr‘

e e ol il il ol i TRl L 5 VOTIQ S T TR PN N e e

INTRODUCTION: CENERAL CHARACTERISTICS

Intuitively, the notion of a residual suggests something which is left over upon the
completion of a process (or any discrete computational sequence) but not intended for use
outside the context of that process. A residual may be (1) data directly generated or
utilized by the process, (2) data indicative of the computational activity of the process, or
(3) accessibility to a cell* no longer associated with the process. The following are
examples of residuals:

1. Data on a scratch tape which is not destroyed when the tape is deallocated.

2. Data in main memory (such as a system message buffer) which is not destroyed
when the memory (buffer) is released by a process.

3. System working data in a user-supplied buffer, generated by a supervisor
routine as a side effect of servicing a request, which is not destroyed by the
supervisor prior to its relinquishing control.

4. The contents of a CPU register which are not purged when the processor is
switched between processes.

5. Information intrinsic to the cell’s structural composition, indicative of its previous
use, which is not adequately destroyed through cell decomposition.

6. Data in archive storage accessible to a newly registered user of the system as a
result of his being assigned the same identifier or user number as a previous
user.

7. Access capability which still exists after the denoted cell has been deallocated.

A residual error occurs when the residual becomes accessible to another process.
In Examples 1, 2, and 4 the cell is subject to allocation to another orocess; consequently,
any information associated with the cell potentially becomes accessible to any process in
execution. If access to that information by the recipient process violates some security
policy, the residual error constitutes a security error.

In order to recognize residual errors it is necessary to distinguish between
legitimate communications and residual data and to recognize changes in cell accessibility;
both are difficult in the general case. Example 3 above illustrates the first difficulty: the

* By "cell" we refer to any container of information which gives identity to a collection of
information and hence may be viewed as a single entity. Cells can exist at various levels
of structure, both logical and physical. For example, a file is a cell which may be viewed
as a discrete container of information or as an aggregation of other cells, known as
records, which in turn may be composed of still other cells, known as fields, etc.
Alternatively, that same file can be viewed as being composed of physical tracks, which
are cells composed of physical records, which are cells composed of words of disk
memory, which are also cells.

- B T T T oy O AT S Lo ey e S b TR
e x il L ; B) L i SuaG - SHLUIEL I e g e R e o Tvia AL o IR TRVRTY ST TR0 L | (o g L a— e
'- e A . . Ty g
b ol - o - ¥ N . 4 -

—

work buffer used as a communications vehicle between the supervisor routine and the
invoking process may, in the event of abnormal termination, contain system information,

} constituting a residual error. Even in the case of normal termination the buffer may
contain residual information in addition to the intended communication. As an example of
\ the latter difficulty, code which allows or disallows user asynchronous 1/O activity can in

effect change cell accessibility and thus be as important as code which changes an access
control list or a page-table.

A situation in which residuals can be distinguished and changes in cell accessibility
{ recognized is the case of resource “allocation/deallocation”; this document is restricted to
i residual errors arising from such processing.

———— . e

VR AR = TN e M S

»

- iy

Ev
i
3

s
‘

e e e L e e R L L R e st L i T T AR T T R e p—

Rt

CELL ALLOCATION/DEALLOCATION PROCESSING

Inasmuch as this report addresses residuals associated with errors in the
allocation/deallocation process, it is useful to examine such processes to gain insight into
how and where residual errors may occur. In this document, the term "allocation
(deallocation)” will apply to any action on behalf of a process to acquire (release)
accessibility to a cell, whether or nct that action is accomplished by code formally labeled
as such (for example, the unbinding of a virtual memory page from a real memory pege is
an instance of deallocation). Intrinsic to this notion is the concept of a "free-pool,” a set
to which a cell no longer reserved by any process is returned for reuse.

No single model of cell allocation/deallocation encompassrs the wide variety of
forms assumed by the process in contemporary operating systems. Different models are
required in order to reflect different areas of functionality within the same system and
even similiar areas of functionality across different systems. However, certain events can
be identified which are associated with the generation of residual errors.

Both the allocation and deallocation processes involve two activities: access
management and cell management. Access management refers to the creation or
destruction of access-paths to a cell, where an access-path is a (reference-path,operator)
pair, resulting in the enabling or disabling of a process from applying particular operators
along indicated reference-paths. (See the section on access management residuals.) Cell
mariagement refers to the acquisition or disposition of the cell itself.

Allocation Processing

In allocation processing, cell management consists of finding a named cell cr
selecting from a free-pool a cell of a specified type (possibly composing it from other
cells). It may also include initialization specific to the cell type (e.g., setting a time stamp
in a message buffer, formatting disk tracks of a new file, supplying skeletal information for
a control block, etc.).

Another function of cell manageront is to establish a "usage reservation” on the cell
being allocaled. Each cell must undergo some change or be marked in some way so as to
prevent simultaneous allocation of nonsharable cells and account for concurrent usage of
sharable cells. For nonsharable ceiis this may only require logically removing the cell
from the free-pool in which it resides. For a sharable cell, the usage reservation
generally includes a usage-indicator which reflects, in part, the number or identity of the
users of the cell.

The access management task involves the creation of an access-path to the cell
veing allocated, i.e., establishing a reference-path (e.g, a page-table entry, a
segment-table entry, a directory link) from the name-space of the requesting process to
the cell and enabling the path for a specified set of process-invocable operators.
Reference-path creation may not be meaningful for all types of cells in all systems (for
example, all of main memory in IBMs System/360 is intrinsically addressable by any
process).

R ER e e ey R
il v (e I St ot ik i iy Sl bt i 1 b e e Al

3
2

Deallocation Processing

i- Deallocation, the converse of allocation, consists of partial or complete destruction
of cell accessibility for the process, followed by cell management processing. The former
involves the disabling of a process from applying a specified set of operators along a
specific set of reference-paths and may also invoive the destruction of the
reference-paths themselves. Residual accessibility to the cell can result from failure to
identify and destroy all relevant access paths or failure to disable a process from applying
a particular operator along a specific path. When no more reservations on the cell are
extant, deallocation processing proceeds with cell management processing.

1 Cell management processing involves disposition of the deallocated cell, which may
be retained for later use with its identity and content intact or released to a free-pool. In
the latter case, it might be decomposed (possibly recursively) into more primitive cells
before being introduced into the appropriate free-pool(s). (For the purpose of this
report, the dericinn process as to whether a released cell is decomposed or not is of littie
interest; it may depend upon a variety of criteria with respect to resource usage demands,
expected requirement for cells of this type, etc.) In addition to disposing of cells, the cell
4 management task is responsible for destroying cell attributes (e.g., cell content, size,
structure) which might otherwise be transmitted through the free-pool by the
deallocation/allocation process and constitute residual errors. This is typically done when
the cell is joined to the free-pool. The decision of which attributes to destroy depends
: largely on (1) the security policy which applies to the cell (e.g, sensitivity of the content),
(2) any specific action regarding residuals explicitty or implicitly indicated by the
deallocation request, and (3) any global security policy in effect for residuals in general.

DR T

Having briefly sketched the basic functions involved in allocation/deallocation, the
" remainder of this report focuses on the various types of residual errors. Each is
discussed in the context of the functional area in allocation/deallocation in which it occurs;
: a search procedure for finding the sources of each type of residual ervor is included.
Two basic residual types are those resulting from errors in cell management (attribute
‘ ‘ residuals) and access management (access residuals).

o

. R e e e S T ot il ey o i i |

L]

CELL MANAGEMENT RESIDUALS

As seen above, a basic function of the cell management task is to dispose of the
deallocated cell. A particularly important aspect of this activity (from a security
standpoint) is the proper handling of any residual associated with the usage of the storage
cell by the deallocating process. The residual can take the form of any attribute of the
cell which is preserved through deallocation and subsequent reallocation. Numerous
attributes can be addressed, including content, size, time of last use, location, structure,
etc. The specific processing required vith respect to such attribute residuals depends
largely on the enforcement technique. In this report, content residuals will be treated
separately from those involving other attributes.

Not all attribute residuals represent security violations; a distinction must be made
between those which may be allowed and those which must be prevented. Considerable
latitude in the choice of enforcement policies is possible, ranging from the prevention of all
attribute residuals to the prevention of only those which are also security errors.
Considerations such as run-time efficiency, functional simplicily, "precautionary” security
measures, and the requirement for data confinement [Lampson 1973] may be involved in
the choice of a particular enforcement policy. For example, to increase run-time
efficiency, a cell might be cleared only if the process to which the cell 1s being allocated is
different from the process from which the cell is being deallocated, or if it contains data
not normally accessible to the allocating process (i.e, only if the residual error can
constitute a security error). Alternatively, the acceptability of some run-time irefficiency
together with the desire for functional simplicity or precautionary security measures might
result in an enforcement policy stating that ail content residuais be destroyed upon
deallocation of a cell, regardless of the processes involved or the content nf the cell
Likewise, the desire to increase data confinement by eliminating potentially high bandwidth
communication channels necessitates that certain attribute residuals be destroyed.

Enforcement policy must be chosen within the constraints imposed by the
capabilities of the existing hardware protection mechanisms. For example, a chosen
enforcement policy might stale that newly allocated cells must be written or cleared
before being read. However, the resolution of the protection mechanism may be
insufficient to support the requisite cell and access mode discrimination. Systems such as
IBM’s System /360, tor example, can enforce storage protectinn only on 2048-byte blocks,
while Honeywell’'s 6180 can enforce storage protection only on a per-segment basis.
Similarly, granting access in one mode ray imply granting access in other modes (e.g.,
write accessibility may imply read accessibility), and in some cases the two are not
distinguished. Thus, granting access in any form may require that the cell or even an
entire block or segment has already been cleared and initialized.

Content Residuals

An obvious example of a content residual involves memory or file space which has
been allocated to a process without all data from the previous allocation having been
purged. The onerating system penetration attack generally referred to as "scavenging”
exploits conditions of this type. The penetration routine requests an allocation of storage

j
1
[}

G Rl P WP ap— B b o Lh e i o e e e R B e e y Bt A —_—
. it . 3

space and reads the storage prior to writing it, perusing it for noninitialized cells which
contain sensitive data left there from a previous process.

Search Strategy. The possibility of diverse enforcement policies and deallocation
strategies precludes the identitication of a specific scheme for identifying the sources of
content rasidual errors. However, it is possible to outline a somewhat general approach,
the majority of which is manual because of the unavailability of a suitably discriminating
recognition algorithm, but aspects of which are amenable to automation.

Systematic identification of the sources of content residual errors in an operating
system requires identifying for each type of cell the corresponding allocation/deallocation
code. The process starts with identitying all cell types defined for the target system, an
essentially manual activity requiring detailed knowledge of the subject operating system,
since it requires recognizing not only simple cell types but also complex cell types defined
across media or with noncontiguous parts.

One way in which identifying cell types may be facilitated is to first identify the
physical media and storage units with which residual errors might be associated; they
include magnetic or paper tape, hardware device buffers, channel or CPU registers, cards,
laser store, and the like. Identification ot the media in which cells (and hence, residual
errors) may exist makes it possible to identity the various types of cells which are in
whole or in part allocated and deallocated in each medium. For disk storage these might
include single-medium cells such as the volume-table-of-contents, directory entries, file
records, unused space records, index records, end-of-file indicators, overflow and linkage
records, disk labels, password files, etc. The cell might also be a component of a
multi-media cell (suggesting the existence of the more sbstract cell types). For example,
the primary index for an index-sequential file may exist in main memory while secondary
indices and the file itself exist on disk.

Another way to identity cell types is to examine the data declarations in the system
source listings, which might be located in the source listings manually or via an automated
data declaration recognizer and then analyzed to determine the cell types which they
represent.

Having identified the various cell types, the evaluator must manually identity the
free-pools which serve as butfers for cell resources between deallocation and allocation.
The free-pools in turn are the basis tor identifying allocation and deallocation code.
Associated with each free-pool are one or more control variables (poo! headers, counters,
etc.) used in the insertion and extraction of cell elements. References to these variables
indicate free-pool manipulation, and hence allocation and deallocation code. An automated
global symbol search may be used to identify all instructions which reference the control
variables. For each identified point, the surrounding code must be examined to determine
if the reference to the variable involves insertion or extraction of elements of the
free-pool, corresponding to deallocation and allocation, respectively.

In summary, deallocation and allocation code can be located by (1) identitying cell
types, (2) for each cell type identitying its particular free-pool(s), and (3) for each
free-pool, identifying the insertion/extraction code and hence the deallocation/allocation

s i

o -
5
L R e 5

"
g ey

-
Wl o« W

=

s

o

-

im0 1 A st s
*

e i s R T o e o b) R e Ll U L i s e i] Y e T T, T

e i ol -

code. When the deall.cation and allocation code has been identified, the remaining task is
to establish that the handling of residuals is consistent with the enforcement policy.

The content of a deallocated cell may be destroyed at one of two points: (1) before
the cell is added to the free-pool or (2) after the the cell has been extracted from the
free-pool (the latter is a less desirable situation from a security standpoint, since a
functional error elsewhere in the system may lead to exposure cf the residual while it
exists in the free-pool). |If the content is destroyed when the cell is added to the
free-pool, two sets of control paths leading to the free-pool insertion point(s) must be
distinguished: those for which content residue is ostensibly destroyed and those for which
it is not, For the former set it is necessary to verify that the entire residual is destroyed.

Conditionals which result in a path being in one set or the other must be consistent
with the desired enforcement policy; this may or may not be readily determinable,
depending largely upon the complexity of the enforcement policy and the associated code.
For example, if the policy states that all content residue associated with cells of a given
type be dnstroyed, then it is necessary to ensure only that all paths leading to the
free-pool insertion point are in the first set. However, if destruction of content residue is
a user option, then it must be verified that election of that option results in an appropriate
path being taken.

If the content residual is destroyed after the elements are extracted from the
free-pool, an analogous set of considerations apply. In this case, the paths under
consideration are those emanating from the extraction point. If there is a conditional
which must be evaluated at allocation, relevant information about the deallocating process
or the cell’s previous use (e.g, classification, previous owner, etc.) may have to be
preserved for the allocation process. The decisions made based on that information must
be consisten! with the desired enforcement policy.

Residuals Involving (hher /Mtributes

Residual information can be transmitted through the free-pool via cell attributes
other than the content attribute. Like the content attribute, preservation of these
attributes through the deallocation/allocation process may (1) estahlish a hidden
communication channel which can be exploited by cooperating processes to defeat
attempts at data containment, or (2) allow information about the process deallocating the
cell to be deduzed by other processes. [Lampson 1973] Two attributes seem particularly
important: cell size, and inter- and intra-cell relationship.

Knowledge the size and use of a previously allocated cell can often provide
security-relevant information. For example, the fact that a cell used as a password buffer
is N characters long implies that the previous password was N or less characters long.
This information might significantly reduce the number trials necessary to guess the
password. If the size of a deallocated cell is either directly determinable by a user
process or the cell itself is reconstructed in response to an allocation request of
nonspecific size, then a size residual results. Size residuals typically appear in systems
with free-pool management schemes in which the cell is retained intact in the free-pool

Co e oo oloil el el bt i | i+ i S W ey e L
: . il 1oy 5 -
- S Bt Db b T i
3 . < :
.

o
¥

(without being decomposed into smalle: celis or assimilated into larger blocks), and
allocations are serviced via a best-fit strategy.

The vrelationship between cells as prese.ed in the free-pool (i.e., their location,
order in the free-pool, etc.) may also convey security-relevant information. The cells may
be subcells of a previously deallocated cell and thus give information about the cell’s
structure, or they may be individually deallocated cells and convey information about the
activity of a specific process. For example, the existence in the free-pool of a set of cells
in a particular size sequence may suggest their previous use (e.g., as elements of a
particular type of control block), and hence the previous activity ot the deallocating
process. Likewise, the order in the free-pool of a series of deallocated buffers may
suggest the structure of a larger process-defined cell such as a file record.
Inter-/intra-cell relationship residuals typically appear in systems with free-pooi
management schemes that employ order-preserving insertionfextraction algorithms si::h as
last-in/tirst-out.

Search Strategy. Much of the approach employed in identifying sources of content
residuals is applicable to identifying sources of residuals involving other attributes; in fact,
the two are identical through the point of locating that code involved with insertion and
. itraction of elements from the free-pool. As with content residuals, the
allocation/deallocaticn logic must be examine.' to ensure that the attribute in question is
destroyed. To prevent size residuals, the decomposition code must be analyzed to ensure ,
that the size of the cell is nol preserved in a recognizable way when it is introducea into
the free-pool. To prevent preservation of inter-/intra-cell relationship, the insertion and
extraction algorithms must be analyzed to ensure that the pair is not order-preserving.

W . 1

.

|
#

S
~

S e

%

¥

e e s El ke i e e el i .

-

ACCESS MANAGEMENT RESIDUALS

The second major source of allocation/deallocation residuals is the access
management function. The primary function of the access management task is to create
(destroy) access-paths as indicated in the allocation (dealiocation) request such that
specific operators may (no longer) be applied to the specified cell alcng specific paths by
the aliocating (deallocating) process. If not done properly, process accessibility to the cell
may stili exist after the deallocation or be inadvertently established as a side-effect of the
allocation. Such a condition is called an "access residual.”

Before we proceed with an analysis‘ of the possible forms of access residuals, it is
instructive to develop a model of the name tranclaticn mechanism to illustrate those
factors which must be considered in reference- path managament.

Name Translation

A process acts an a cell via a reference-path, which may be thought of as a triple of
the form (name,context,translation-mechanism). The elements of the iriple are related via
the functionai relationship

T(name,context) = physical address of cell

where "T" is the iranslation mechanism, "name" is the identifier by which the cell is
denoted in the process-name-space (e.g., logical unit number, virtual memory address), and
"context” is the supporting data which participates in the name transiation process (e.g., a
segment table). The process references the cell by implicitly (through instruction
execution or procedure irvocation) invoking the translation-mechanism and either implicitly
(through operator selection) or explicitly supplying to it the name and context.

The translation process may be sing'e-step (e.g., addition of the base register v alue
in a base-relocation scheme) or arbitrarily complex, involving a number of translation steps
representing different ievels of translation:

T(name,context) = tn{(fn(name),..,t2(f2(name),t1(fl(name),context))...)

lgnoring indirection, each level of translation corresponds to a level of cell compasition
with segments of the name being used in separate steps of the translation process (f is a
subname selector, and t is a context selector). Name transiation may be be broken or
interrupted at a variety of points (e.g., segment number interpretation, page number
interpretation). Indirection may further complicate the name interpretation process by
requiring successive application of the above-described process to successive results until
the final cell address is determined.

A number of reierence-path configurations can exist for a given cell: in the simplest
case, a single reference-path exists to the given cell (Figure 1a); within a given context a
cell may have been identified by several names (Figure lb); different processes may
access the same cell by different reference-paths (Figures 1c¢ and 1d).

]

TR o M T W Fy L e e L T

Y [e x;‘;? """‘H';ﬁ
10
(name,context) f—— T ——p| cell
(@)
(namel,contextA)
T PP cell
(name2,contextA
(b)
(namel, ccntextA)
/ T PP cell
(name2, contextB)
(c)
(hamel, contextA) T
cell
(name2,contextB | Ty /
(d)

Figure 1.

R

~
s

b

o

n
4

3

"T‘l!"r""- a2 w’“‘:""’"ﬂ"ﬂrwﬁfﬂwm““ T A . e g o S N | gy L bk e i e B Lee e i H
e

e g 2

S
3.

ya gl 1~ e

11

Associated with a given relerence-path is a mechanism which either permits or
prevents a process from applying an operator to the cell via the reference~path on the
basis of a capability, a storage-key, a bounds register, or the like. In some systems the
mediatior. mechanism and the reference-path mechanism are intertwired; in other systems
the two ave separate.

Access Residuals

An access residual is an access-path not destroyed despite a deallocation request
specifying that access-path. All access residuals constitute rec.dual errors. Destruction
of an access-path may consist of either deleting a reference-path or disabling a process
from applying a particular operator along that path. (The latter might entail as little as
setting a bit from zero to one.)

Access residuals result by means of the following:

1. Failure to disable either all of the indicated operators associated with the
specified access-path {(e.g., cell writability is to be disabled but the relevant
indicator is not reset) or the identified reference-path in response to a
deallocation request.

2. Failure to recognize and hence process all access-paths relevant to a particular
deallocation request.

Case 2 merits further diccussion. As was indicated in the name translation model
above, multiple access-paths may exist to a cell either through separate cell names (e.g.,
muttiple allocations of the same cell by the came process), separate contexts (eg,
allocation of the same cell by different processes), different translation mechanisms (e.g.,
different procedures), or combinations thereof. Such access-paths may be created not
only in response to formal allocation requests, but also as a consequence of operators
which copy existing reference-path data or use the reference-path mechanism to translate
a name and then store the result for later use. For example, an I/O or message reply
request may be fully translated to the physical address of lhe cell and then stored for
fulure use. Likewise, for lengthy translations, efficiency considerations may dictate that
the same translation process not be repeated for every use of that name. All such
created access-paths must be properly accounted for.

Search S:rategy. Identitication of sources of access-residual errors is complicated
by the following two problems:

1 Atthough manifested at cell deallocation, access residuals may be the result of
functional errors at cell allocation (i.e, a specification mismatch between
allocation and deallocation code in accounting for allocated cells). For example,
access-paths may be established during cell allocation processing which are
unknown to the deallocation process and consequently nat deleted.

{
A

12

2. The code which produces, destroys, or copies stored, translated references as
well as the references themselves may be scattered throughou' the operating
system, making both difficult to locate and analyze. The stored, translated

names may not even be referencable by (and hence locatable through) the cell
management code. For example, cell management processing might know only
the number, but not the location, of outstanding resolved references with cell
management processing suspended until the number is zero.

Detection of sources of access residuals involves two phases: identification of access
management code, and evaluation of that code.

The first phase is a multistep process, portions of which are identical to that used in
detecting attribute residuals. Access management code falls into two categories: that
which is associated with the formal allocation/deallocation functions of the system, and all
other code which creates or destroys accesses paths.

|dentification of access management code associated with allocation/deallocation uses
a technique similar to that employed in detecting attribute residuals, consisting of first
identifying cell types; for each cell type identitying the corrsponding free-pool(s) and tor
each free-pool identitying the insertion/extraction code. The access management code is
subsequently located by examining code surrounding the insertion and extracticn points (in
the case of allocation, code logically subsequent to the extraction point, and in the case of
deallocation, code logically preceding the insertion point) for access-path creation and
destruction.

In addition to the access management code in formal allocation/deallocation, access
paths can be created or destroyed by any code which copies, inserts, or deletes an
element of an existing access path. Much of this code can be found by a symbol search
using the symbols by which access path elements are referenced. However, access path
elements may not always be referenced symbolically. One way in which nonsymbolic
references can occur is via oftsets and pointers. Knowledge of the tables and control
structures in which access paths are defined may be useful in locating relevant code. (A
symbol search might be performed which uses the names of these tables as objects of the
search.) The above procedure must be appited recursively so that all access path elements
created by such propagatior are identified along with the associated access management

code.

A third way in which access paths can be created is the invocation of special
operators which use the underlying translation mechanisms to produce partially or fully
translated names. For example, the "LOAD-REAL-ADDRESS" operator in the 1BM
System/370 instruction set uses the address translation mechanism to develop a real
memory address. Since invcation of such operators constitute copying of access path
elements, such operators must be recognized and their invocations located.

Finally, accesses via some translation mechanisms can be inter upted (e.g, through
faults) and a fully or partially transiated name stored. Examination of the code associated
with such interrupts is also necessary to track the use of stored interpreted names.

o g

ey i R
- =TT SN

4
i
i 13
E A
Having identified the access management code, the remaining task is to evaluate that
code to ensure that access paths are properly created and deleted, and that all paths are
properly accounted for. This evaluation process may uncover inconsistenc’es between the
creation and destruction of access paths which may themselves suggest the existence of
additional access management code.
REFERENCE
i
Lampson, B, "A Note on the Confinement Problem," .
Communications of the ACM, Vol. 16, No. 10, October 1973,
pp. 613-615.
i

T T T TL T ¥ o g R g 1w B B g T s o B i & . e - e oy e

